Math 2060 Tutorial Notes

Section $\{\xi, \}$ 8. Let $f : \mathbb{R} \to \mathbb{R}$ be such that f'(x) = f(x) for all $x \in \mathbb{R}$. Show that there exists $K \in \mathbb{R}$ such that

 $f(x) = Ke^x$ for all $x \in \mathbb{R}$.

This is a direct consequence of Theorem 8.3.4 By the argument in the proof of Theorem 8.3.4, if f(0)=0, then $f\equiv 0$ Hence, we can assume $f(0) \neq 0$ and consider $g(X) = \frac{f(X)}{f(0)}$. which satisfies SLOJ= and S'(X)=S(X), VXER Again by Theorem 8.3.4 and Definition 8.3.5, g(x)= ex, yx E R Then f(x) = Kex where we let K=f(0)

Section 8.4

8. If $f : \mathbb{R} \to \mathbb{R}$ is such that f''(x) = f(x) for all $x \in \mathbb{R}$, show that there exist real numbers α , β such that $f(x) = \alpha c(x) + \beta s(x)$ for all $x \in \mathbb{R}$. Apply this to the functions $f_1(x) := e^x$ and $f_2(x) := e^{-x}$ for $x \in \mathbb{R}$. Show that $c(x) = \frac{1}{2}(e^x + e^{-x})$ and $s(x) = \frac{1}{2}(e^x - e^{-x})$ for $x \in \mathbb{R}$.

As is implied in Q6, define two sequences of function

$$G(n)$$
 and $G(n)$ inductively by
 $G(n) = 1$, $G(n) = n$
 $G(n) = 1$, $G(n) = n$
Then by the same argument as in the proof of Theorem 8.4.1.
there exist functions (CK) and $S(N)$, $S(1, C(0) = 1, C'(0) = 0, S(0) = 0, S(0) = 0$
and $C''(N) = C(N)$, $S'(N) = S'(N)$, $C'(N) = S(N)$, $S'(N) = C(N)$
where $C(N) = 1$ in $G(N)$, $S(N) = 1$ in $S_n(N)$
And by the uniqueness argument in Theorem 8.4.4, we can also
obserive $C(N)$ and $S(N)$ are unique in the sence that
if $h(0) = h'(0) = 0$ and $h''(N) = h(N)$, $NX \in \mathbb{R}$, then $h \equiv 0$
Now let $G(N) = f(0) C(N) + f'(0) S(N)$
Then $g'(N) = f(0) = S(N) + f'(0) C(N)$
We have $g(0) = f(0)$, $g'(0) = f'(0)$
Take $Q(N) := f(N) - S(N)$, then $Q(0) = Q'(0) = 0$ and $Q''(N) = Q(N)$
By uniqueness, $Q \equiv 0$, which implies $f(n) = O(N) + Q(N) = Q(N) + Q(N)$
By uniqueness, $Q \equiv 0$, which implies $f(n) = O(N) + Q(N) = Q(N) + Q(N)$
where $Q = f(0)$, $Q = f'(0)$

Take $f_1(x) = e^x$ and $f_2(x) = e^x$, we get $Ce^{\pi} = C(\pi) + S(\pi)$ $e^{-\pi} = C(\pi) - S(\pi)$ Hence, $c(x) = \frac{1}{2}(e^{x} + e^{-x})$, $s(x) = \frac{1}{2}(e^{x} - e^{-x})$

Section 9.1

2. Show that if a series is conditionally convergent, then the series obtained from its positive terms is divergent, and the series obtained from its negative terms is divergent.

A sequence San] is said to be conditionally convergent if Ean is convergent but Ephn is divergent Let $p_n = \frac{a_n t |a_n|}{z} = \int_0^\infty a_n \text{ if } a_n \neq 0$ 0 otherwise $q_n = \frac{q_n - |q_n|}{2} = \int q_n \quad \text{if } q_n < 0$ $0 \quad \text{otherwise}$ Moreover, [an] = 2Pn-an= an-29n Then $\sum_{n=1}^{\infty} |G_n| = \sum_{n=1}^{\infty} (2P_n - a_n) = \sum_{n=1}^{\infty} (a_n - 2q_n)$ Since Z |and diverges but Zan is convergent, both Z Pn and Z 9n ave divergent

Section G.1

- 7. (a) If $\sum a_n$ is absolutely convergent and (b_n) is a bounded sequence, show that $\sum a_n b_n$ is absolutely convergent.
 - (b) Give an example to show that if the convergence of $\sum a_n$ is conditional and (b_n) is a bounded sequence, then $\sum a_n b_n$ may diverge.

(a) Since
$$\{bn\}$$
 is bounded, we can find a large $L > 0$ s.t.
 $[bn] < L$ for all n
Then $\sum_{n \ge 1}^{\infty} |a_n b_n| < L \sum_{n \ge 1}^{\infty} |a_n| < \infty$
Moreover, the sum $\sum_{i=1}^{n} |a_i b_i|$ is monotonely increasing
Hence $\sum_{n=1}^{\infty} |a_n b_n|$ converges
 (b) Consider $a_n := \frac{(-1)^n}{n}$, $b_n := (-1)^n$
which satisfies the condition
But $\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} \frac{1}{n}$ diverges