Section 8.3
Math 2060 Tutorial Notes
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f^{\prime}(x)=f(x)$ for all $x \in \mathbb{R}$. Show that there exists $K \in \mathbb{R}$ such that $f(x)=K e^{x}$ for all $x \in \mathbb{R}$.

This is a direct consequence of Theorem 8.3.4 By the argument in the proof of Theorem 8.3.4, if $f(0)=0$, then $f \equiv 0$
Hence, we can assume $f(0) \neq 0$ and consider $g(x)=\frac{f(x)}{f(0)}$. which satisfies $g(0)=1$ and $\rho^{\prime}(x)=\rho(x), \forall x \in \mathbb{R}$
Again by Theorem 8.3.4 and Definition 8.3.5,

$$
g(x)=e^{x} \quad, \forall x \in \mathbb{R}
$$

Then $f(x)=K e^{x}$ where we let $K=f(0)$

Section 8.4
8. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that $f^{\prime \prime}(x)=f(x)$ for all $x \in \mathbb{R}$, show that there exist real numbers α, β such that $f(x)=\alpha c(x)+\beta s(x)$ for all $x \in \mathbb{R}$. Apply this to the functions $f_{1}(x):=e^{x}$ and $f_{2}(x):=e^{-x}$ for $x \in \mathbb{R}$. Show that $c(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$ and $s(x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)$ for $x \in \mathbb{R}$.

As is implied in Q6, define two sequences of function $\left\{C_{n}\right\}$ and $\left\{S_{n}\right\}$ inductively by

$$
\left\{\begin{array}{l}
C_{1}(x)=1, S_{1}(x)=x \\
S_{n}(x)=\int_{0}^{x} C_{n}(x) d x \\
C_{n+1}(x)=1+\int_{0}^{x} S_{n}(x) d x
\end{array}\right.
$$

Then by the same argument as in the proof of Theorem 8.4.1, there exist functions $c(x)$ and $s(x)$, s.t. $c(0)=1, c^{\prime}(0)=0, \quad s(0)=0, s^{\prime}(0)=1$ and $\quad c^{\prime \prime}(x)=c(x), s^{\prime \prime}(x)=s^{\prime}(x), \quad c^{\prime}(x)=s(x), \quad s^{\prime}(x)=c(x)$ where $c(x)=\lim _{n \rightarrow \infty} c_{n}(x), s(x)=\lim _{n \rightarrow \infty} S_{n}(x)$
And by the uniqueness argument in Theorem 8.4.4, we can also derive $C(x)$ and $s(x)$ are unique in the sense that
if $h(0)=h^{\prime}(0)=0$ and $h^{\prime \prime}(x)=h(x), \forall x \in \mathbb{R}$, then $h \equiv 0$
Now let $g(x)=f(0) c(x)+f^{\prime}(0) s(x)$
Then $s^{\prime}(x)=f(0) s(x)+f^{\prime}(0) c(x)$
We have $s(0)=f(0), s^{\prime}(0)=f^{\prime}(0)$
Take $\varphi(x):=f(x)-g(x)$, then $\varphi(0)=\varphi^{\prime}(0)=0$ and $\varphi^{\prime \prime}(x)=\varphi(x)$
By uniqueness, $\varphi \equiv 0$, which implies $f(x)=\alpha c(x)+\beta s(x)$ where $\alpha=f(0), \beta=f^{\prime}(0)$

Take $f_{1}(x)=e^{x}$ and $f_{2}(x)=e^{-x}$, we get

$$
\left\{\begin{array}{l}
e^{x}=c(x)+s(x) \\
e^{-x}=c(x)-s(x)
\end{array}\right.
$$

Hence, $c(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right), \quad s(x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)$

Section 9.1
2. Show that if a series is conditionally convergent, then the series obtained from its positive terms is divergent, and the series obtained from its negative terms is divergent.

A sequence $\operatorname{San}_{n} 1$ is said to be conditionally convergent if $\sum_{n=1}^{\infty} a_{n}$ is convergent but $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is divergent

Let $p_{n}=\frac{a_{n}+\left|a_{n}\right|}{2}= \begin{cases}a_{n} & \text { if } a_{n}>0 \\ 0 & \text { otherwise }\end{cases}$

$$
q_{n}=\frac{a_{n}-\left|a_{n}\right|}{2}= \begin{cases}a_{n} & \text { if } a_{n}<0 \\ 0 & \text { otherwise }\end{cases}
$$

Moreover, $\quad\left|a_{n}\right|=2 P_{n}-a_{n}=a_{n}-2 q_{n}$
Then $\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty}\left(2 p_{n}-a_{n}\right)=\sum_{n=1}^{\infty}\left(a_{n}-2 q_{n}\right)$
Since $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges but $\sum_{n=1}^{\infty} a_{n}$ is convergent, both $\sum_{n=1}^{\infty} P_{n}$ and $\sum_{n=1}^{\infty} q_{n}$ are divergent

Section 9.1
7. (a) If $\sum a_{n}$ is absolutely convergent and $\left(b_{n}\right)$ is a bounded sequence, show that $\sum a_{n} b_{n}$ is absolutely convergent.
(b) Give an example to show that if the convergence of $\sum a_{n}$ is conditional and $\left(b_{n}\right)$ is a bounded sequence, then $\sum a_{n} b_{n}$ may diverge.
(a) Since $\left\{b_{n}\right\}$ is bounded, we can find a large $L>0$ sit. $\left|b_{n}\right|<L$ for all n
Then $\sum_{n=1}^{\infty}\left|a_{n} b_{n}\right|<L \sum_{n=1}^{\infty}\left|a_{n}\right|<\infty$
Moreover, the sum $\sum_{i=1}^{n}\left|a_{i} b_{i}\right|$ is monotonely increasing
Hence $\sum_{n=1}^{\infty}\left|a_{n} b_{n}\right|$ converges
(b) Consider $a_{n}:=\frac{(-1)^{n}}{n}, b_{n}:=(-1)^{n}$
which satisfies the condition
But $\sum_{n=1}^{\infty} a_{m} b_{n}=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges

